Growth of flagellar filaments of Escherichia coli is independent of filament length.

نویسندگان

  • Linda Turner
  • Alan S Stern
  • Howard C Berg
چکیده

Bacterial flagellar filaments grow at their distal ends, from flagellin that travels through a central channel ∼2 nm in diameter. The flagellin is extruded from the cytoplasm by a pump powered by a proton motive force (PMF). We measured filament growth in cells near the mid-exponential-phase with flagellin bearing a specific cysteine-for-serine substitution, allowing filaments to be labeled with sulfhydryl-specific fluorescent dyes. We labeled filaments first with a green maleimide dye and then, following an additional period of growth, with a red maleimide dye. The contour lengths of the green and red segments were measured. The average lengths of red segments (∼2.3 μm) were the same regardless of the lengths of the green segments from which they grew (ranging from less than 1 to more than 9 μm in length). Thus, flagellar filaments do not grow at a rate that decreases exponentially with length, as formerly supposed. If flagellar filaments were broken by viscous shear, the broken filaments continued to grow. Identical results were obtained whether flagellin was expressed from fliC on the chromosome under the control of its native promoter or on a plasmid under the control of the arabinose promoter.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative analysis of flagellin sequences from Escherichia coli strains possessing serologically distinct flagellar filaments with a shared complex surface pattern.

Escherichia coli morphotype E flagellar filaments have a characteristic surface pattern of short-pitch loops when examined by electron microscopy. Seven of the 50 known E. coli H (flagellar antigen) serotypes (H1, H7, H12, H23, H45, H49, and H51) produce morphotype E filaments. Polymerase chain reaction was used to amplify flagellin structural (fliC) genes from E. coli strains producing morphot...

متن کامل

Isolation and characterization of FliK-independent flagellation mutants from Salmonella typhimurium.

A flagellum of Salmonella typhimurium and Escherichia coli consists of three structural parts, a basal body, a hook, and a filament. Because the fliK mutants produce elongated hooks, called polyhooks, lacking filament portions, the fliK gene product has been believed to be involved in both the determination of hook length and the initiation of the filament assembly. In the present study, we iso...

متن کامل

Bacterial Flagella: Flagellar Motor

Many species of bacteria actively seek out favourable conditions for growth by swimming up gradients of nutrients, oxygen, light or other attractants, or down gradients away from toxic substances (repellants). Different species employ several different modes of swimming, almost all of which are driven by the rapid rotation of helical flagellar filaments that protrude from the cell. Rotation of ...

متن کامل

Theoretical and computational investigation of flagellin translocation and bacterial flagellum growth.

The bacterial flagellum is a self-assembling filament, which bacteria use for swimming. It is built from tens of thousands of flagellin monomers in a self-assembly process that involves translocation of the monomers through the flagellar interior, a channel, to the growing tip. Flagellum monomers are pumped into the filament at the base, move unfolded along the channel and then bind to the tip ...

متن کامل

Kinetic analysis of the growth rate of the flagellar hook in Salmonella typhimurium by the population balance method.

The growth rate of flagellar hooks in Salmonella typhimurium was analyzed by computer-aided simulation of the length distributions of mutant hooks of uncontrolled length (polyhooks). The wild-type hook has a relatively well-controlled length, with an average of 55 nm and a standard deviation of 6 nm. Mutations in the fliK gene give rise to polyhooks. A histogram of the lengths of polyhooks from...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 194 10  شماره 

صفحات  -

تاریخ انتشار 2012